Sketch-guided image editing aims to achieve local fine-tuning of the image based on the sketch information provided by the user, while maintaining the original status of the unedited areas. Due to the high cost of acquiring human sketches, previous works mostly relied on edge maps as a substitute for sketches, but sketches possess more rich structural information. In this paper, we propose a sketch generation scheme that can preserve the main contours of an image and closely adhere to the actual sketch style drawn by the user. Simultaneously, current image editing methods often face challenges such as image distortion, training cost, and loss of fine details in the sketch. To address these limitations, We propose a conditional diffusion model (SketchFFusion) based on the sketch structure vector. We evaluate the generative performance of our model and demonstrate that it outperforms existing methods.


翻译:草图引导的图像编辑旨在基于用户提供的草图信息实现图像的局部微调,同时保持未编辑区域的原始状态。由于获取人类草图的成本较高,先前的工作大多依赖于边缘图作为草图的替代品,但草图具有更丰富的结构信息。在本文中,我们提出了一种草图生成方案,可以保留图像的主要轮廓并紧密地遵循用户绘制的实际草图风格。同时,现有的图像编辑方法常常面临图像失真、训练成本高和草图细节丢失等挑战。为了解决这些限制,我们提出了一种基于草图结构向量的条件扩散模型(SketchFFusion)。我们评估了模型的生成性能,并证明它优于现有的方法。

0
下载
关闭预览

相关内容

扩散模型是近年来快速发展并得到广泛关注的生成模型。它通过一系列的加噪和去噪过程,在复杂的图像分布和高斯分布之间建立联系,使得模型最终能将随机采样的高斯噪声逐步去噪得到一张图像。
【CVPR2023】基于文本驱动软掩码的多模态表示学习
专知会员服务
20+阅读 · 2023年4月10日
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员