本文提出一种自监督学习框架内的视觉语言表示学习方法,通过引入新的操作、损失和数据增强策略。首先,通过软掩蔽图像中与对应标题中的某个单词最相关的区域,而不是完全删除它们,为图像文本匹配(image text matching, ITM)任务生成多样化的特征。由于该框架只依赖于没有细粒度注释的图像-标题对,通过使用多模态编码器计算单词条件视觉注意来识别每个单词的相关区域。通过提出图像-文本对比学习(ITC)目标的焦点损失,鼓励模型更多地关注难的但多样化的例子,这缓解了过拟合和偏差问题的固有局限性。通过挖掘各种示例,通过屏蔽文本和对图像渲染失真,对自监督学习进行多模态数据增强。这三种创新的结合对学习预训练模型是有效的,导致在多个视觉-语言下游任务上的出色表现。https://arxiv.org/abs/2304.00719

成为VIP会员查看完整内容
20

相关内容

CVPR 2023大会将于 6 月 18 日至 22 日在温哥华会议中心举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。 CVPR 2023 共收到 9155 份提交,比去年增加了 12%,创下新纪录,今年接收了 2360 篇论文,接收率为 25.78%。作为对比,去年有 8100 多篇有效投稿,大会接收了 2067 篇,接收率为 25%。
【CVPR2023】面向自监督视觉表示学习的混合自编码器
专知会员服务
24+阅读 · 2023年4月3日
【CVPR2023】基础模型驱动弱增量学习的语义分割
专知会员服务
17+阅读 · 2023年3月2日
【CVPR2022】跨模态检索的协同双流视觉语言预训练模型
专知会员服务
20+阅读 · 2022年4月21日
【CVPR2022】三元组对比学习的视觉-语言预训练
专知会员服务
31+阅读 · 2022年3月3日
【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
48+阅读 · 2021年12月20日
人大最新《基于Transformer 的视频语言预训练》综述论文
专知会员服务
45+阅读 · 2021年9月27日
专知会员服务
38+阅读 · 2021年5月16日
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
19+阅读 · 2021年3月2日
论文浅尝 | 弱监督下极简的视觉语言预训练模型
开放知识图谱
1+阅读 · 2022年9月26日
【KDD2022】GraphMAE:自监督掩码图自编码器
专知
7+阅读 · 2022年6月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
20+阅读 · 2019年9月7日
VIP会员
相关VIP内容
【CVPR2023】面向自监督视觉表示学习的混合自编码器
专知会员服务
24+阅读 · 2023年4月3日
【CVPR2023】基础模型驱动弱增量学习的语义分割
专知会员服务
17+阅读 · 2023年3月2日
【CVPR2022】跨模态检索的协同双流视觉语言预训练模型
专知会员服务
20+阅读 · 2022年4月21日
【CVPR2022】三元组对比学习的视觉-语言预训练
专知会员服务
31+阅读 · 2022年3月3日
【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
48+阅读 · 2021年12月20日
人大最新《基于Transformer 的视频语言预训练》综述论文
专知会员服务
45+阅读 · 2021年9月27日
专知会员服务
38+阅读 · 2021年5月16日
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
19+阅读 · 2021年3月2日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员