Comparative and evolutive ecologists are interested in the distribution of quantitative traits among related species. The classical framework for these distributions consists of a random process running along the branches of a phylogenetic tree relating the species. We consider shifts in the process parameters, which reveal fast adaptation to changes of ecological niches. We show that models with shifts are not identifiable in general. Constraining the models to be parsimonious in the number of shifts partially alleviates the problem but several evolutionary scenarios can still provide the same joint distribution for the extant species. We provide a recursive algorithm to enumerate all the equivalent scenarios and to count the effectively different scenarios. We introduce an incomplete-data framework and develop a maximum likelihood estimation procedure based on the EM algorithm. Finally, we propose a model selection procedure, based on the cardinal of effective scenarios, to estimate the number of shifts and prove an oracle inequality.
翻译:比较和演进生态学家对相关物种之间数量特性的分布感兴趣。 这些分布的典型框架包括沿与物种有关的植物基因树分支随机运行的过程。 我们考虑过程参数的变化,这些变化揭示了迅速适应生态位置变化的情况。 我们显示,变化模型一般无法识别。 将模型的变迁次数限制在不同的变迁次数上可以部分缓解问题, 但一些进化情景仍然可以为所剩物种提供同样的联合分布。 我们提供了一种循环算法,以列出所有等同的情景并有效地计算不同的情景。 我们引入了一个不完整的数据框架,并根据EM算法制定了一个最大可能性的估计程序。 最后,我们提议了一个基于有效情景基础的模型选择程序,以估计变迁次数并证明一个孔径的不平等。