Content-based fashion image retrieval (CBFIR) has been widely used in our daily life for searching fashion images or items from online platforms. In e-commerce purchasing, the CBFIR system can retrieve fashion items or products with the same or comparable features when a consumer uploads a reference image, image with text, sketch or visual stream from their daily life. This lowers the CBFIR system reliance on text and allows for a more accurate and direct searching of the desired fashion product. Considering recent developments, CBFIR still has limits when it comes to visual searching in the real world due to the simultaneous availability of multiple fashion items, occlusion of fashion products, and shape deformation. This paper focuses on CBFIR methods with the guidance of images, images with text, sketches, and videos. Accordingly, we categorized CBFIR methods into four main categories, i.e., image-guided CBFIR (with the addition of attributes and styles), image and text-guided, sketch-guided, and video-guided CBFIR methods. The baseline methodologies have been thoroughly analyzed, and the most recent developments in CBFIR over the past six years (2017 to 2022) have been thoroughly examined. Finally, key issues are highlighted for CBFIR with promising directions for future research.


翻译:时装图像内容检索(CBFIR)广泛用于我们日常生活中的在线平台,以便搜索时装图像或物品。在电子商务购买中,当消费者上传参考图像、带有文本的图像、草图或日常生活中的视觉流时,CBFIR系统可以检索具有相同或可比较特征的时装物品或产品。这降低了CBFIR系统对文本的依赖,并允许更准确和直接地搜索所需的时尚产品。考虑到最近的发展,CBFIR在现实世界中进行视觉搜索仍存在限制,因为同时提供多个时装物品、时装产品的遮挡和形状变形。本文重点介绍CBFIR方法,重点关注以图像、带有文本的图像、草图和视频为指导的CBFIR方法。因此,我们将CBFIR方法分为四类,即以图像为导向的CBFIR(添加属性和风格)、图像和文本为导向的CBFIR、草图为导向的CBFIR和视频为导向的CBFIR方法。基线方法已经仔细分析,过去六年(2017年至2022年)CBFIR的最新发展进行了彻底的研究。最后,本文突出了CBFIR的主要问题,并为未来的研究提供了有前途的方向。

0
下载
关闭预览

相关内容

内容检索指根据媒体的语义以及上下文联系进行检索。
「深度图像检索: 2012到2020」大综述论文,21页pdf
专知会员服务
41+阅读 · 2021年1月30日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
17+阅读 · 2021年1月21日
Arxiv
17+阅读 · 2020年11月15日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
「深度图像检索: 2012到2020」大综述论文,21页pdf
专知会员服务
41+阅读 · 2021年1月30日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员