In real-time status update services for the Internet of Things (IoT), the timely dissemination of information requiring timely updates is crucial to maintaining its relevance. Failing to keep up with these updates results in outdated information. The age of information (AoI) serves as a metric to quantify the freshness of information. The Existing works to optimize AoI primarily focus on the transmission time from the information source to the monitor, neglecting the transmission time from the monitor to the destination. This oversight significantly impacts information freshness and subsequently affects decision-making accuracy. To address this gap, we designed an edge-enabled vehicular fog system to lighten the computational burden on IoT devices. We examined how information transmission and request-response times influence end-to-end AoI. As a solution, we proposed Dueling-Deep Queue Network (dueling-DQN), a deep reinforcement learning (DRL)-based algorithm and compared its performance with DQN policy and analytical results. Our simulation results demonstrate that the proposed dueling-DQN algorithm outperforms both DQN and analytical methods, highlighting its effectiveness in improving real-time system information freshness. Considering the complete end-to-end transmission process, our optimization approach can improve decision-making performance and overall system efficiency.
翻译:暂无翻译