In recent years, correntropy has been seccessfully applied to robust adaptive filtering to eliminate adverse effects of impulsive noises or outliers. Correntropy is generally defined as the expectation of a Gaussian kernel between two random variables. This definition is reasonable when the error between the two random variables is symmetrically distributed around zero. For the case of asymmetric error distribution, the symmetric Gaussian kernel is however inappropriate and cannot adapt to the error distribution well. To address this problem, in this brief we propose a new variant of correntropy, named asymmetric correntropy, which uses an asymmetric Gaussian model as the kernel function. In addition, a robust adaptive filtering algorithm based on asymmetric correntropy is developed and its steady-state convergence performance is analyzed. Simulations are provided to confirm the theoretical results and good performance of the proposed algorithm.


翻译:近些年来,correntropy被误用于强大的适应性过滤器,以消除脉动噪音或室外噪音的不利影响。 Correntropy一般被定义为两个随机变量之间高斯内核的预期值。 当两个随机变量之间的错误分布在零左右时,这一定义是合理的。 然而,对于不对称错误分布,对称高斯内核是不合适的,无法适应错误分布。 为了解决这个问题,我们在此简短的介绍一个新的可伦罗普性变种,即称不对称可伦坡,以不对称高斯内核模型作为内核函数。此外,还开发了一种基于对称焦罗本法的稳健的适应性过滤算法,并分析了其稳定状态的趋同性。 提供了模拟,以证实拟议算法的理论结果和良好性能。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员