In geostatistics, the process of interest is commonly assumed to be stationary in a spatial region, particularly when only a single realization of data at finite locations is available. In this research, we develop a test for stationarity utilizing robust local estimates of spatial covariances. The test statistic is derived from clustering the data locations using Voronoi tessellations. If the stationary assumption is violated, we provide a method to show the nonstationary features by partitioning the region into stationary sub-regions. We further determine the best number of partitions using Bayesian information criterion. The proposed method is computationally efficient and applicable to irregularly spaced data. Its effectiveness is demonstrated through some simulation studies and an application to a precipitation dataset in Colorado.
翻译:在地理统计学中,人们通常认为感兴趣的过程在空间区域是静止的,特别是在只有一次在有限地点实现数据的情况下。在这项研究中,我们利用对空间共差的可靠当地估计,开发了一种静态测试。测试统计数据来自使用Voronoi星系对数据位置进行分组。如果违反固定假设,我们提供一种方法,通过将区域分割成固定的次区域来显示非静止特征。我们使用Bayesian信息标准进一步确定最佳分区的数目。拟议的方法是计算效率高和适用于非正常的空间数据。通过一些模拟研究和对科罗拉多降水数据集的应用来证明其有效性。