Predicting the response at an unobserved location is a fundamental problem in spatial statistics. Given the difficulty in modeling spatial dependence, especially in non-stationary cases, model-based prediction intervals are at risk of misspecification bias that can negatively affect their validity. Here we present a new approach for model-free nonparametric spatial prediction based on the conformal prediction machinery. Our key observation is that spatial data can be treated as exactly or approximately exchangeable in a wide range of settings. In particular, under an infill asymptotic regime, we prove that the response values are, in a certain sense, locally approximately exchangeable for a broad class of spatial processes, and we develop a local spatial conformal prediction algorithm that yields valid prediction intervals without strong model assumptions like stationarity. Numerical examples with both real and simulated data confirm that the proposed conformal prediction intervals are valid and generally more efficient than existing model-based procedures for large datasets across a range of non-stationary and non-Gaussian settings.
翻译:预测未观测地点的响应是空间统计中的一个根本问题。鉴于空间依赖性模型的建模困难,特别是在非静止情况下,模型预测间隔有可能出现偏差,从而对其有效性产生消极影响。我们在这里提出了一个基于符合的预测机制的无模型非参数空间预测新办法。我们的主要观察是,空间数据可以被视为在广泛环境中可以完全或大致交换的。特别是,在一个填充的无空间制度下,我们证明,从某种意义上说,反应值可以在当地大约交换,用于广泛的空间过程类别,我们开发一种地方空间符合预测算法,在没有固定性等强有力的模型假设的情况下产生有效的预测间隔。有实际和模拟数据的数字实例证实,拟议的符合的预测间隔与一系列非静止和非撒旦环境中大型数据集的现有基于模型的程序相比是有效的,而且一般来说效率更高。