This work revolves around the two following questions: Given a convex body $C\subset\mathbb{R}^d$, a positive integer $k$ and a finite set $S\subset\mathbb{R}^d$ (or a finite $\mu$ Borel measure in $\mathbb{R}^d$), how many homothets of $C$ are required to cover $S$ if no homothet is allowed to cover more than $k$ points of $S$ (or have measure more than $k$)? how many homothets of $C$ can be packed if each of them must cover at least $k$ points of $S$ (or have measure at least $k$)? We prove that, so long as $S$ is not too degenerate, the answer to both questions is $\Theta_d(\frac{|S|}{k})$, where the hidden constant is independent of $d$, this is clearly best possible up to a multiplicative constant. Analogous results hold in the case of measures. Then we introduce a generalization of the standard covering and packing densities of a convex body $C$ to Borel measure spaces in $\mathbb{R}^d$ and, using the aforementioned bounds, we show that they are bounded from above and below, respectively, by functions of $d$. As an intermediate result, we give a simple proof the existence of weak $\epsilon$-nets of size $O(\frac{1}{\epsilon})$ for the range space induced by all homothets of $C$. Following some recent work in discrete geometry, we investigate the case $d=k=2$ in greater detail. We also provide polynomial time algorithms for constructing a packing/covering exhibiting the $\Theta_d(\frac{|S|}{k})$ bound mentioned above in the case that $C$ is an Euclidean ball. Finally, it is shown that if $C$ is a square then it is NP-hard to decide whether $S$ can be covered by $\frac{|S|}{4}$ squares containing $4$ points each.
翻译:这项工作围绕以下两个问题进行 : 如果一个硬体 $ 2C\ subset\ mathb{R ⁇ d$, 一个正整数美元, 一个限定的美元S\ subset\ mathb{R ⁇ d$ (或一个限定的美元Borel $\mu$ 美元 美元 美元 美元 美元 美元 美元), 那么需要多少个C$的同质体来支付美元, 如果不允许任何同质体 $( 或测量的美元 美元 )? 如果一个中间体 $4, 一个正整数美元 美元, 一个正整数美元 美元 美元 (或测量的美元 美元 美元 美元 美元 ), 那么如果隐藏的常数是美元( 美元), 那么这显然是多倍数的常数 。 当我们用直方的正数来进行分析时, 将一个普通的C 包含标准的 美元 。