We propose a new globally convergent numerical method to solve Hamilton-Jacobi equations in $\mathbb{R}^d$, $d \geq 1$. This method is named as the Carleman convexification method. By Carleman convexification, we mean that we use a Carleman weight function to convexify the conventional least squares mismatch functional. We will prove a new version of the convexification theorem guaranteeing that the mismatch functional involving the Carleman weight function is strictly convex and, therefore, has a unique minimizer. Moreover, a consequence of our convexification theorem guarantees that the minimizer of the Carleman weighted mismatch functional is an approximation of the viscosity solution we want to compute. Some numerical results in 1D and 2D will be presented.
翻译:我们以$\mathbb{R ⁇ d$, $d\geq 1$提出一个新的全球趋同数字方法, 以解决汉密尔顿- Jacobi 等式。 这个方法被称为 Carleman convexification 方法 。 由 Carleman convexification, 我们的意思是, 我们使用 Carleman 重量函数来解析常规最小方块错配功能 。 我们将证明一个新版本的解析理论, 保证涉及 Carleman 重量函数的错配功能是严格的convex, 因此有一个独特的最小化器。 此外, 我们的拼化理论保证 Carleman 加权错配功能的最小化功能是我们想要计算到的粘度解决方案的近似值 。 将会提供 1D 和 2D 中的一些数字结果 。