This paper investigates Monte Carlo methods to estimate probabilities of rare events associated with solutions to the $d$-dimensional McKean-Vlasov stochastic differential equation. The equation is usually approximated using a stochastic interacting $P$-particle system, a set of $P$ coupled $d$-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique to reduce high relative variance of Monte Carlo estimators of rare event probabilities. In the SDE context, optimal measure change is derived using stochastic optimal control theory to minimize estimator variance, which when applied to stochastic particle systems yields a $P \times d$-dimensional partial differential control equation, which is cumbersome to solve. The work in [15] circumvented this problem by a decoupling approach, producing a $d$-dimensional control PDE. Based on the decoupling approach, we develop a computationally efficient double loop Monte Carlo (DLMC) estimator. We offer a systematic approach to our DLMC estimator by providing a comprehensive error and work analysis and formulating optimal computational complexity. Subsequently, we propose an adaptive DLMC method combined with IS to estimate rare event probabilities, significantly reducing relative variance and computational runtimes required to achieve a given relative tolerance compared with standard Monte Carlo estimators without IS. The proposed estimator has $\mathcal{O}(TOL^{-4})$ computational complexity with significantly reduced constant. Numerical experiments, which are performed on the Kuramoto model from statistical physics, show substantial computational gains achieved by our estimator.
翻译:本文调查了蒙特卡洛估算与美元- 维基麦肯- 弗拉索夫( 弗拉索夫) 差异方程式解决方案相关的稀有事件的概率的方法。 方程式通常使用一套Stochactic 互动 $P$- 粒子系统, 一套美元和美元相配的维度差异方程式( SDEs) 。 重要取样( IS) 是减少蒙特卡洛稀有事件概率的相对差异的一种常见方法。 在 SDE 背景下, 最佳计量变化是使用随机最佳控制理论来得出, 以尽量减少估测器差异。 当应用于随机粒子系统系统时, 将产生一个 $P\ timed d$- 美元- 维度部分控制方程式( Polest) 。 以解析法计算出一个高相对成本的双环 蒙特卡洛( DLMC) 估测算器, 我们用一种系统化的方法来尽量减少估测估测估量的估量性估量器 。 我们用一种系统化的测测测算法, 进行一个不高度的精确的计算, 度的计算方法将比的计算结果的计算结果分析, 将显示一个比比的计算结果的计算结果的计算结果的计算结果的计算结果的计算结果, 度的计算结果的计算结果显示一个比值的计算结果的计算结果的计算结果的计算方法, 。