The recent neural implicit representation-based methods have greatly advanced the state of the art for solving the long-standing and challenging problem of reconstructing a discrete surface from a sparse point cloud. These methods generally learn either a binary occupancy or signed/unsigned distance field (SDF/UDF) as surface representation. However, all the existing SDF/UDF-based methods use neural networks to implicitly regress the distance in a purely data-driven manner, thus limiting the accuracy and generalizability to some extent. In contrast, we propose the first geometry-guided method for UDF and its gradient estimation that explicitly formulates the unsigned distance of a query point as the learnable affine averaging of its distances to the tangent planes of neighbouring points. Besides, we model the local geometric structure of the input point clouds by explicitly learning a quadratic polynomial for each point. This not only facilitates upsampling the input sparse point cloud but also naturally induces unoriented normal, which further augments UDF estimation. Finally, to extract triangle meshes from the predicted UDF we propose a customized edge-based marching cube module. We conduct extensive experiments and ablation studies to demonstrate the significant advantages of our method over state-of-the-art methods in terms of reconstruction accuracy, efficiency, and generalizability. The source code is publicly available at https://github.com/rsy6318/GeoUDF.
翻译:最近以神经隐含代表为基础的神经系统方法极大地提高了解决从稀疏的云层重建离散表面的长期和具有挑战性的问题的先进水平。这些方法通常学习二进制占用或签名/未签名的距离场(SDF/UDF/UDF)作为表面代表。然而,所有现有的SDF/UDF-基于神经网络的方法都使用纯粹以数据驱动的方式隐含的神经网络来隐含地使距离倒退,从而在某种程度上限制了输入点云的准确性和可概括性。相比之下,我们提议为UDF及其梯度估计采用第一个几何制导导法,明确提出一个未指定的查询点距离,作为可学习的距离平均等于其与相近点相近的平面的距离。此外,我们通过明确学习每个点的四进点多角度多角度模型来模拟输入点的局部结构。这不仅便于放大输入点云层的云层,而且自然地诱导出不方向的正常。我们提议从预测 UDFF18的边际估算中提取三角模。最后,从预测中提取出一个未指定的查询点,我们提议在公共边边边边/边基结构的精确度分析模型中可以显示的精确度的精确度。我们一般分析方法的精确度。我们进行的广泛试验和一般分析。我们用基模模模制模制的精确性研究。我们进行一般的基底的模型的精确性研究。我们用法系的精确度是展示法系的精确度。我们进行。我们用的方法。我们进行。我们进行广泛的试验和一般的基模。