Depth separation results propose a possible theoretical explanation for the benefits of deep neural networks over shallower architectures, establishing that the former possess superior approximation capabilities. However, there are no known results in which the deeper architecture leverages this advantage into a provable optimization guarantee. We prove that when the data are generated by a distribution with radial symmetry which satisfies some mild assumptions, gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations, and where the hidden layer is held fixed throughout training. By building on and refining existing techniques for approximation lower bounds of neural networks with a single layer of non-linearities, we show that there are $d$-dimensional radial distributions on the data such that ball indicators cannot be learned efficiently by any algorithm to accuracy better than $\Omega(d^{-4})$, nor by a standard gradient descent implementation to accuracy better than a constant. These results establish what is to the best of our knowledge, the first optimization-based separations where the approximation benefits of the stronger architecture provably manifest in practice. Our proof technique introduces new tools and ideas that may be of independent interest in the theoretical study of both the approximation and optimization of neural networks.


翻译:深度分离结果为深海神经网络对浅层建筑的好处提供了可能的理论解释,确定前者拥有超强近似能力。然而,深层建筑将这一优势用于可变最佳保证,没有已知的结果。我们证明,当数据是通过放射对称分布产生的,符合一些轻度假设时,梯度下降可以有效地学习球指标功能,使用深2神经网络,具有两层模拟活化作用,并且在整个培训过程中将隐藏的层固定起来。通过建立和完善现有技术,接近具有单一非线性层神经网络下层的现有技术,我们表明,在数据上存在着美元-维线分布,因此球指标无法通过比美元/奥米加(d ⁇ -4})更精确的任何算法来有效地学习,或者通过标准的梯度下降执行来比常数更精确。这些结果确定了我们最了解的方面,第一次基于优化的分离,在其中,较强结构在实践中明显地展示了近似的利益。我们的证据技术引入了新的优化工具,以及理论性优化的理论性研究中可能引入了新的工具与想法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员