Low-light images challenge both human perceptions and computer vision algorithms. It is crucial to make algorithms robust to enlighten low-light images for computational photography and computer vision applications such as real-time detection and segmentation. This paper proposes a semantic-guided zero-shot low-light enhancement network which is trained in the absence of paired images, unpaired datasets, and segmentation annotation. Firstly, we design an enhancement factor extraction network using depthwise separable convolution for an efficient estimate of the pixel-wise light deficiency of a low-light image. Secondly, we propose a recurrent image enhancement network to progressively enhance the low-light image with affordable model size. Finally, we introduce an unsupervised semantic segmentation network for preserving the semantic information during intensive enhancement. Extensive experiments on benchmark datasets and a low-light video demonstrate that our model outperforms the previous state-of-the-art qualitatively and quantitatively. We further discuss the benefits of the proposed method for low-light detection and segmentation.
翻译:低光图像既挑战人类的感知,也挑战计算机的视觉算法。 关键是要使算法变得强大, 以启发低光图像, 用于计算摄影和计算机的视觉应用, 如实时检测和分解。 本文建议建立一个语义制导零光低光增强网络, 在没有配对图像、 未设模版数据集和分解注释的情况下对其进行培训。 首先, 我们设计一个增强因子提取网络, 使用深度可分解的相容网络, 以有效估计低光图像的像素光缺陷。 第二, 我们提议建立一个经常性的图像增强网络, 以逐步提高低光图像的低光度, 且能承受得起的模型大小。 最后, 我们推出一个不受监督的语义分解网络, 以便在强化过程中保存语义信息。 有关基准数据集和低光视频的广泛实验表明, 我们的模型在质量和数量上都超越了先前的状态。 我们进一步讨论了拟议的低光度检测和分解方法的好处 。