We introduce a training objective for continuous normalizing flows that can be used in the absence of samples but in the presence of an energy function. Our method relies on either a prescribed or a learnt interpolation $f_t$ of energy functions between the target energy $f_1$ and the energy function of a generalized Gaussian $f_0(x) = (|x|/\sigma)^p$. This then induces an interpolation of Boltzmann densities $p_t \propto e^{-f_t}$ and we aim to find a time-dependent vector field $V_t$ that transports samples along this family of densities. Concretely, this condition can be translated to a PDE between $V_t$ and $f_t$ and we minimize the amount by which this PDE fails to hold. We compare this objective to the reverse KL-divergence on Gaussian mixtures and on the $\phi^4$ lattice field theory on a circle.
翻译:我们引入了连续正常流动的培训目标, 可以在没有样本的情况下使用, 但有一个能源功能。 我们的方法取决于目标能源$f_ 1美元与通用高斯元$_0(x)=( ⁇ x ⁇ /\gma)+p$的能源功能之间的一个规定或学习的能源函数内插 $_t美元。 然后引出博尔兹曼密度的内插 $p_t\ propto e ⁇ - f_t}, 我们的目标是找到一个时间依赖的矢量字段$V_t$, 在密度组中运输样品。 具体地说, 这个条件可以转换为 $V_ t$ 和 $f_ t$ 的PDE, 我们最大限度地减少PDE 无法维持的量 。 我们将此目标与高斯混合物的逆向KL- divergence 和圆形上的 $\\\\\4$ lattice 字段理论作比较 。