In this work, we develop a scalable, local trajectory optimization algorithm that enables robots to interact with other robots. It has been shown that agents' interactions can be successfully captured in game-theoretic formulations, where the interaction outcome can be best modeled via the equilibria of the underlying dynamic game. However, it is typically challenging to compute equilibria of dynamic games as it involves simultaneously solving a set of coupled optimal control problems. Existing solvers operate in a centralized fashion and do not scale up tractably to multiple interacting agents. We enable scalable distributed game-theoretic planning by leveraging the structure inherent in multi-agent interactions, namely, interactions belonging to the class of dynamic potential games. Since equilibria of dynamic potential games can be found by minimizing a single potential function, we can apply distributed and decentralized control techniques to seek equilibria of multi-agent interactions in a scalable and distributed manner. We compare the performance of our algorithm with a centralized interactive planner in a number of simulation studies and demonstrate that our algorithm results in better efficiency and scalability. We further evaluate our method in hardware experiments involving multiple quadcopters.
翻译:在这项工作中,我们开发了一个可扩缩的局部轨迹优化算法,使机器人能够与其他机器人互动。已经显示,代理方的相互作用可以通过游戏理论配方成功捕捉到,其中互动结果可以通过基本动态游戏的平衡性来进行最佳模型化。然而,由于动态游戏同时涉及解决一系列相互配合的最佳控制问题,我们通常难以对动态游戏进行均衡的计算。现有的解算器以集中方式运作,不向多个互动代理商扩展。我们通过利用多试剂互动中固有的结构,即属于动态潜在游戏类别的相互作用,能够实现可扩缩的分布式游戏理论规划。由于动态潜在游戏的平衡性可以通过尽量减少单一的潜在功能来找到,我们可以应用分布式分散式和分散式控制技术来寻找多试剂相互作用的平衡性。我们在一些模拟研究中将我们的算法的性与集中式交互式规划器的性能进行比较,并表明我们的算法在效率和可伸缩性方面产生更好的效果。我们进一步评估了涉及多个方位的硬件实验方法。</s>