We tackle the problem of target-free text-guided image manipulation, which requires one to modify the input reference image based on the given text instruction, while no ground truth target image is observed during training. To address this challenging task, we propose a Cyclic-Manipulation GAN (cManiGAN) in this paper, which is able to realize where and how to edit the image regions of interest. Specifically, the image editor in cManiGAN learns to identify and complete the input image, while cross-modal interpreter and reasoner are deployed to verify the semantic correctness of the output image based on the input instruction. While the former utilizes factual/counterfactual description learning for authenticating the image semantics, the latter predicts the "undo" instruction and provides pixel-level supervision for the training of cManiGAN. With such operational cycle-consistency, our cManiGAN can be trained in the above weakly supervised setting. We conduct extensive experiments on the datasets of CLEVR and COCO, and the effectiveness and generalizability of our proposed method can be successfully verified. Project page: https://sites.google.com/view/wancyuanfan/projects/cmanigan.


翻译:我们处理无目标文本引导图像操纵问题,这需要根据给定文本指令修改输入参考图像,而培训期间没有观察到地面真实目标图像。为了应对这一具有挑战性的任务,我们提议在本文中设置一个Cyclic-ManiGAN(cManiGAN),它能够了解哪些地方和如何编辑感兴趣的图像区域。具体地说,cManiGAN的图像编辑学会识别和完成输入图像,同时使用跨模式的翻译和解释器,以核实根据输入指令输出图像的语义正确性。前者利用事实/对应事实描述学习来认证图像语义学,而后者预测“undo”教学,并为培训cmaniGAN提供像素级监督。有了这种操作周期一致性,我们的cmaniGAN可以在上述薄弱的监管环境中接受培训。我们在CLEVR和COCO的数据集上进行广泛的实验,以及我们拟议的方法的有效性和可概括性/可概括性。 ALGOA/IANPES/Projisional pages。 http://qualisal/ aromaismaisal.

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
12+阅读 · 2020年8月3日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员