In this paper, we present TEXTure, a novel method for text-guided generation, editing, and transfer of textures for 3D shapes. Leveraging a pretrained depth-to-image diffusion model, TEXTure applies an iterative scheme that paints a 3D model from different viewpoints. Yet, while depth-to-image models can create plausible textures from a single viewpoint, the stochastic nature of the generation process can cause many inconsistencies when texturing an entire 3D object. To tackle these problems, we dynamically define a trimap partitioning of the rendered image into three progression states, and present a novel elaborated diffusion sampling process that uses this trimap representation to generate seamless textures from different views. We then show that one can transfer the generated texture maps to new 3D geometries without requiring explicit surface-to-surface mapping, as well as extract semantic textures from a set of images without requiring any explicit reconstruction. Finally, we show that TEXTure can be used to not only generate new textures but also edit and refine existing textures using either a text prompt or user-provided scribbles. We demonstrate that our TEXTuring method excels at generating, transferring, and editing textures through extensive evaluation, and further close the gap between 2D image generation and 3D texturing.
翻译:在本文中, 我们展示了文字导制生成、 编辑和传输 3D 形状的纹理的新方法 。 利用预先训练的深度到图像扩散模型, 文本应用了一个从不同角度绘制 3D 模型的迭接方案。 然而, 虽然深度到图像模型可以从一个单一的角度创造出可信的纹理, 生成过程的随机性可以在整个 3D 对象的纹理过程中造成许多不一致。 为了解决这些问题, 我们动态地定义了将图像拼接成三个递进状态的拼图分割, 并展示了一个新的精心开发的传播取样程序, 利用这种三角图示代表从不同角度生成无缝的纹理。 然后我们展示了一种将生成的纹理图转换到新的 3D 地理图案, 而不需要明确的地对地图绘制清晰的图, 以及从一组图像中提取的语理质素质素, 而不需要任何明确的重建 。 最后, 我们显示, TEXTureture 不仅可以生成新文本, 还可以编辑和完善现有的文本, 3D, 利用一种快速的文本转换方式, 展示在复制和用户图像中, 。