The study of molecule-target interaction is quite important for drug discovery in terms of target identification, hit identification, pathway study, drug-drug interaction, etc. Most existing methodologies utilize either biomedical network information or molecule structural features to predict potential interaction link. However, the biomedical network information based methods usually suffer from cold start problem, while structure based methods often give limited performance due to the structure/interaction assumption and data quality. To address these issues, we propose a pseudo-siamese Graph Neural Network method, namely MTINet+, which learns both biomedical network topological and molecule structural/chemical information as representations to predict potential interaction of given molecule and target pair. In MTINet+, 1-hop subgraphs of given molecule and target pair are extracted from known interaction of biomedical network as topological information, meanwhile the molecule structural and chemical attributes are processed as molecule information. MTINet+ learns these two types of information as embedding features for predicting the pair link. In the experiments of different molecule-target interaction tasks, MTINet+ significantly outperforms over the state-of-the-art baselines. In addition, in our designed network sparsity experiments , MTINet+ shows strong robustness against different sparse biomedical networks.


翻译:分子-目标相互作用的研究对于药物发现在目标识别、撞击识别、路径研究、药物-药物相互作用等方面非常重要。大多数现有方法利用生物医学网络信息或分子结构特征来预测潜在的互动联系;然而,生物医学网络信息基础方法通常会遇到寒冷的起始问题,而基于结构的方法往往由于结构/相互作用假设和数据质量而产生有限的性能。为解决这些问题,我们提议了一种假西亚图形神经网络方法,即MTINet+,该方法学习生物医学网络的地形学和分子结构/化学信息,以预测特定分子和目标对子的潜在互动。在MTINet+中,从已知的生物医学网络作为地形信息的相互作用中提取了特定分子和目标对子的1兆头子子子谱,同时分子结构和化学属性作为分子信息处理。MTINet+了解这两类信息是预测对子链接的内嵌特征。在试验中,MTINet+在预测特定分子-目标分子和分子结构/化学数据对准的基线方面明显超越了最新基准。此外,在我们设计的网络中,Mexmissmexitynet 实验中,Mexiritynetreality surity surity surity exmalmentality wereality.

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员