The study of molecule-target interaction is quite important for drug discovery in terms of target identification, hit identification, pathway study, drug-drug interaction, etc. Most existing methodologies utilize either biomedical network information or molecule structural features to predict potential interaction link. However, the biomedical network information based methods usually suffer from cold start problem, while structure based methods often give limited performance due to the structure/interaction assumption and data quality. To address these issues, we propose a pseudo-siamese Graph Neural Network method, namely MTINet+, which learns both biomedical network topological and molecule structural/chemical information as representations to predict potential interaction of given molecule and target pair. In MTINet+, 1-hop subgraphs of given molecule and target pair are extracted from known interaction of biomedical network as topological information, meanwhile the molecule structural and chemical attributes are processed as molecule information. MTINet+ learns these two types of information as embedding features for predicting the pair link. In the experiments of different molecule-target interaction tasks, MTINet+ significantly outperforms over the state-of-the-art baselines. In addition, in our designed network sparsity experiments , MTINet+ shows strong robustness against different sparse biomedical networks.
翻译:分子-目标相互作用的研究对于药物发现在目标识别、撞击识别、路径研究、药物-药物相互作用等方面非常重要。大多数现有方法利用生物医学网络信息或分子结构特征来预测潜在的互动联系;然而,生物医学网络信息基础方法通常会遇到寒冷的起始问题,而基于结构的方法往往由于结构/相互作用假设和数据质量而产生有限的性能。为解决这些问题,我们提议了一种假西亚图形神经网络方法,即MTINet+,该方法学习生物医学网络的地形学和分子结构/化学信息,以预测特定分子和目标对子的潜在互动。在MTINet+中,从已知的生物医学网络作为地形信息的相互作用中提取了特定分子和目标对子的1兆头子子子谱,同时分子结构和化学属性作为分子信息处理。MTINet+了解这两类信息是预测对子链接的内嵌特征。在试验中,MTINet+在预测特定分子-目标分子和分子结构/化学数据对准的基线方面明显超越了最新基准。此外,在我们设计的网络中,Mexmissmexitynet 实验中,Mexiritynetreality surity surity surity exmalmentality wereality.