Recently 3D-aware GAN methods with neural radiance field have developed rapidly. However, current methods model the whole image as an overall neural radiance field, which limits the partial semantic editability of synthetic results. Since NeRF renders an image pixel by pixel, it is possible to split NeRF in the spatial dimension. We propose a Compositional Neural Radiance Field (CNeRF) for semantic 3D-aware portrait synthesis and manipulation. CNeRF divides the image by semantic regions and learns an independent neural radiance field for each region, and finally fuses them and renders the complete image. Thus we can manipulate the synthesized semantic regions independently, while fixing the other parts unchanged. Furthermore, CNeRF is also designed to decouple shape and texture within each semantic region. Compared to state-of-the-art 3D-aware GAN methods, our approach enables fine-grained semantic region manipulation, while maintaining high-quality 3D-consistent synthesis. The ablation studies show the effectiveness of the structure and loss function used by our method. In addition real image inversion and cartoon portrait 3D editing experiments demonstrate the application potential of our method.
翻译:最近,3D-觉醒GAN方法与神经光亮场发展迅速。然而,目前的方法将整个图像作为整体神经光亮场进行模型,限制了合成结果的局部语义编辑性。由于NERF通过像素将图像像素变成像素,因此有可能将NERF在空间维度上进行分割。我们提出了用于语义3D-觉光化合成和操控的立体神经光谱场(CNeRF)。CNeRF将图像按语义区域进行分解,并学习每个区域独立的神经光亮场,最后将其结合并形成完整的图像。因此,我们可以独立操作合成的语义区域,同时固定其他部分。此外,CNeRF还设计了每个语义区域内的分色形状和纹理功能。与3D-觉合成的语义合成方法相比,我们的方法可以进行精细度的语义区域操纵,同时保持高质量的3D相容合成,最后将它们结合并制作成完整的图像。因此,我们可以独立操作合成的合成语义区域,同时固定其他部分。此外,还可以将合成其他部分加以调整。此外,CNRF还设计,还设计,用来分辨,以辨图像结构和损失功能,以展示。我们应用的模型的模型。