Image quality control (IQC) can be used in automated magnetic resonance (MR) image analysis to exclude erroneous results caused by poorly acquired or artifact-laden images. Existing IQC methods for MR imaging generally require human effort to craft meaningful features or label large datasets for supervised training. The involvement of human labor can be burdensome and biased, as labeling MR images based on their quality is a subjective task. In this paper, we propose an automatic IQC method that evaluates the extent of artifacts in MR images without supervision. In particular, we design an artifact encoding network that learns representations of artifacts based on contrastive learning. We then use a normalizing flow to estimate the density of learned representations for unsupervised classification. Our experiments on large-scale multi-cohort MR datasets show that the proposed method accurately detects images with high levels of artifacts, which can inform downstream analysis tasks about potentially flawed data.
翻译:图像质量控制( IQC) 可用于自动磁共振图像分析, 以排除错误的结果, 这些错误的结果是由不良获得的或被文物覆盖的图像造成的。 MR 成像的现有 IQC 方法一般要求人努力制作有意义的特征或为监督培训的大型数据集贴标签。 人类劳动的参与可能繁琐而有偏见, 因为根据质量贴上 MR 图像标签是一项主观任务 。 在本文中, 我们提议一个自动的 IQC 方法, 不经监督地评估MR 图像中的文物范围 。 特别是, 我们设计一个基于对比性学习的文物编码网络 。 我们随后使用正常化的流程来估计为不受监督的分类而学习显示的密度 。 我们在大型多孔 MR 数据集上的实验显示, 拟议的方法精确地检测了高水平的人工制品图像, 这可以让下游分析任务了解潜在的缺陷数据 。