We propose Neural-DynamicReconstruction (NDR), a template-free method to recover high-fidelity geometry and motions of a dynamic scene from a monocular RGB-D camera. In NDR, we adopt the neural implicit function for surface representation and rendering such that the captured color and depth can be fully utilized to jointly optimize the surface and deformations. To represent and constrain the non-rigid deformations, we propose a novel neural invertible deforming network such that the cycle consistency between arbitrary two frames is automatically satisfied. Considering that the surface topology of dynamic scene might change over time, we employ a topology-aware strategy to construct the topology-variant correspondence for the fused frames. NDR also further refines the camera poses in a global optimization manner. Experiments on public datasets and our collected dataset demonstrate that NDR outperforms existing monocular dynamic reconstruction methods.
翻译:我们建议使用无模板方法,从单镜 RGB-D 相机中恢复高纤维几何和动态场景的移动。在 NDR 中,我们采用了表面代表的神经隐含功能,使所捕捉的颜色和深度能够被充分利用以共同优化表面和变形。为了代表并限制非硬体变形,我们建议建立一个新型神经不可逆变形网络,以使任意的两个框架的周期一致性自动得到满足。考虑到动态场景的表面表层可能随着时间的推移而变化,我们采用了一种表层认知战略,以构建引信框架的表层-变异对应。NDR还进一步以全球优化的方式完善摄像头。关于公共数据集的实验和我们收集的数据集表明NDR超越了现有的单体动态重建方法。