This paper proposes a Poisson multi-Bernoulli mixture (PMBM) filter on the space of sets of tree trajectories for multiple target tracking with spawning targets. A tree trajectory contains all trajectory information of a target and its descendants, which appear due to the spawning process. Each tree contains a set of branches, where each branch has trajectory information of a target or one of the descendants and its genealogy. For the standard dynamic and measurement models with multi-Bernoulli spawning, the posterior is a PMBM density, with each Bernoulli having information on a potential tree trajectory. To enable a computationally efficient implementation, we derive an approximate PMBM filter in which each Bernoulli tree trajectory has multi-Bernoulli branches, obtained by minimising the Kullback-Leibler divergence. The resulting filter improves tracking performance of state-of-the-art algorithms in a simulated scenario.
翻译:本文建议用Poisson多-Bernoulli混合物(PMBM)过滤多种产卵目标目标跟踪的树轨空间。 树轨包括产卵过程中出现的目标及其后代的所有轨迹信息。 每棵树都包含一组树枝, 其中每个树枝都有目标或后代及其基因的轨迹信息。 对于多Bernoulli产卵的标准动态和测量模型而言, 后壁是PMBM密度, 每个伯努利都有关于潜在树轨迹的信息。 为了实现计算高效的实施, 我们从中得出一个近似PMBM过滤器, 其中每个伯努利树轨迹都有多- Bernoululli的分支, 通过最小化 Kullback- Leibel 差异获得。 由此形成的过滤器改进了模拟情景中最新算法的跟踪功能。