Simultaneous Localization and Mapping (SLAM) is considered to be an essential capability for intelligent vehicles and mobile robots. However, most of the current lidar SLAM approaches are based on the assumption of a static environment. Hence the localization in a dynamic environment with multiple moving objects is actually unreliable. The paper proposes a dynamic SLAM framework RF-LIO, building on LIO-SAM, which adds adaptive multi-resolution range images and uses tightly-coupled lidar inertial odometry to first remove moving objects, and then match lidar scan to the submap. Thus, it can obtain accurate poses even in high dynamic environments. The proposed RF-LIO is evaluated on both self-collected datasets and open Urbanloco datasets. The experimental results in high dynamic environments demonstrate that, compared with LOAM and LIO-SAM, the absolute trajectory accuracy of the proposed RF-LIO can be improved by 90% and 70%, respectively. RF-LIO is one of the state-of-the-art SLAM systems in high dynamic environments.
翻译:同时本地化和绘图(SLAM)被认为是智能车辆和移动机器人的基本能力,但是,目前大多数Lidar SLAM方法是以静态环境为假设的。因此,多移动物体在动态环境中的本地化实际上是不可靠的。本文提议在LIO-SAM的基础上建立一个动态的LF-LIO框架(RF-LIO框架),该框架增加适应性多分辨率图像,并使用紧凑的Lidar惯性软体测量法首先移除移动物体,然后将Lidar扫描仪与子映射相匹配。因此,即使在高动态环境中,它也能获得准确的配置。拟议的RF-LIO在自收集数据集和开放城市洛科数据集上都进行了评估。高动态环境中的实验结果表明,与LOM和LIO-SAAM相比,拟议的RF-LIO的绝对轨迹精度可以分别提高90%和70%。RF-LIO是高动态环境中最先进的SLM系统之一。