In this letter, we present a versatile hierarchical offline planning algorithm, along with an online control pipeline for agile quadrupedal locomotion. Our offline planner alternates between optimizing centroidal dynamics for a reduced-order model and whole-body trajectory optimization, with the aim of achieving dynamics consensus. Our novel momentum-inertia-aware centroidal optimization, which uses an equimomental ellipsoid parameterization, is able to generate highly acrobatic motions via ``inertia shaping". Our whole-body optimization approach significantly improves upon the quality of standard DDP-based approaches by iteratively exploiting feedback from the centroidal level. For online control, we have developed a novel convex model predictive control scheme through a linear transformation of the full centroidal dynamics. Our controller can efficiently optimize for both contact forces and joint accelerations in single optimization, enabling more straightforward tracking for momentum-rich motions compared to existing quadrupedal MPC controllers. We demonstrate the capability and generality of our trajectory planner on four different dynamic maneuvers. We then present one hardware experiment on the MIT Mini Cheetah platform to demonstrate the performance of the entire planning and control pipeline on a twisting jump maneuver.
翻译:在这封信中,我们展示了一个多功能等级离线规划算法,以及一个灵活四振移动的在线控制管道。我们的离线规划师在优化环球动力进行减序模型优化和全体轨迹优化之间的替代,目的是实现动态共识。我们的新颖的动力-内皮-无观测-环球环球优化优化,它能够使用“静离子成形”来产生高度杂交的动作。我们的全机优化方法通过迭接利用中央机器人一级的反馈,大大提高了标准DDP方法的质量。为了在线控制,我们开发了一个新型的Convex模型预测控制计划,通过整个中央机器人动态动态的线性转换实现。我们的控制员可以高效地优化接触力和联合加速,从而能够与现有的四振动MPC控制器相比更直接地跟踪富动力的动作。我们全机能优化了我们基于DDP的标准方法的质量,从而通过迭接地利用来自中央机器人一级的反馈。我们随后在MIT Mini Cheet 跳动控制管道平台上进行了一个硬件实验,以展示其性运行情况。