Accurate assessment of dietary intake requires improved tools to overcome limitations of current methods including user burden and measurement error. Emerging technologies such as image-based approaches using advanced machine learning techniques coupled with widely available mobile devices present new opportunities to improve the accuracy of dietary assessment that is cost-effective, convenient and timely. However, the quality and quantity of datasets are essential for achieving good performance for automated image analysis. Building a large image dataset with high quality groundtruth annotation is a challenging problem, especially for food images as the associated nutrition information needs to be provided or verified by trained dietitians with domain knowledge. In this paper, we present the design and development of a mobile, image-based dietary assessment system to capture and analyze dietary intake, which has been deployed in both controlled-feeding and community-dwelling dietary studies. Our system is capable of collecting high quality food images in naturalistic settings and provides groundtruth annotations for developing new computational approaches.


翻译:对饮食摄入的准确评估需要改进工具,以克服当前方法的局限性,包括用户负担和测量错误。新兴技术,例如利用先进的机器学习技术以及广泛可用的移动设备采用基于图像的方法,提供了新的机会来提高饮食评估的准确性,这种评估具有成本效益、方便和及时性。然而,数据集的质量和数量对于实现自动图像分析的良好性能至关重要。建立一个质量高的地面真实性注释的大型图像数据集是一个棘手问题,对于食品图像来说尤其如此,因为相关的营养信息需要由受过培训的具有领域知识的饮食学家提供或核实。在本文件中,我们介绍设计和开发一个移动的、基于图像的饮食评估系统,以捕捉和分析饮食摄入量,该系统已经用于控制饮食和社区健康饮食研究。我们的系统能够收集自然科学环境中高质量的食品图像,并为开发新的计算方法提供地面真实性说明。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
8+阅读 · 2020年5月2日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员