Even though it has extensively been shown that retrieval specific training of deep neural networks is beneficial for nearest neighbor image search quality, most of these models are trained and tested in the domain of landmarks images. However, some applications use images from various other domains and therefore need a network with good generalization properties - a general-purpose CBIR model. To the best of our knowledge, no testing protocol has so far been introduced to benchmark models with respect to general image retrieval quality. After analyzing popular image retrieval test sets we decided to manually curate GPR1200, an easy to use and accessible but challenging benchmark dataset with a broad range of image categories. This benchmark is subsequently used to evaluate various pretrained models of different architectures on their generalization qualities. We show that large-scale pretraining significantly improves retrieval performance and present experiments on how to further increase these properties by appropriate fine-tuning. With these promising results, we hope to increase interest in the research topic of general-purpose CBIR.


翻译:尽管广泛表明对深神经网络的检索具体培训有利于近邻图像搜索质量,但大多数这些模型都是在里程碑图像领域培训和测试的,但有些应用使用来自其他不同领域的图像,因此需要一个具有良好通用特性的网络――通用 CBIR 模型。据我们所知,迄今为止没有采用测试协议来为一般图像检索质量的模型进行基准测试。在分析大众图像检索测试组之后,我们决定手动整理GPR1200,这是一个易于使用和容易获取但具有挑战性的基准数据集,具有广泛的图像类别。这一基准随后用于评估不同结构的预培训模型的通用性。我们表明,大规模预培训可大大改进检索性,并就如何通过适当的微调进一步增加这些特性提出实验。通过这些有希望的结果,我们希望增加人们对通用 CBIR 研究课题的兴趣。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
63+阅读 · 2021年5月29日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
72+阅读 · 2021年5月11日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
少标签数据学习,54页ppt
专知会员服务
194+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
专知会员服务
63+阅读 · 2021年5月29日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
72+阅读 · 2021年5月11日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
少标签数据学习,54页ppt
专知会员服务
194+阅读 · 2020年5月22日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员