Typical neural network architectures used for image segmentation cannot be changed without further training. This is quite limiting as the network might not only be executed on a powerful server, but also on a mobile or edge device. Adaptive neural networks offer a solution to the problem by allowing certain adaptivity after the training process is complete. In this work for the first time, we apply Post-Train Adaptive (PTA) approach to the task of image segmentation. We introduce U-Net+PTA neural network, which can be trained once, and then adapted to different device performance categories. The two key components of the approach are PTA blocks and PTA-sampling training strategy. The post-train configuration can be done at runtime on any inference device including mobile. Also, the PTA approach has allowed to improve image segmentation Dice score on the CamVid dataset. The final trained model can be switched at runtime between 6 PTA configurations, which differ by inference time and quality. Importantly, all of the configurations have better quality than the original U-Net (No PTA) model.
翻译:用于图像分割的典型神经网络结构无法在不经过进一步培训的情况下改变。 这相当有限, 因为网络不仅可以在强大的服务器上执行, 还可以在移动或边缘设备上执行。 适应性神经网络在培训过程完成后允许一定的适应性, 从而提供了解决问题的解决方案。 在这项工作中, 我们第一次对图像分割任务应用了“ 培训后适应性( PTA) ” 方法。 我们引入了 U- Net+PTA 神经网络, 该网络可以培训一次, 然后适应不同的设备性能类别。 这种方法的两个关键组成部分是 PTA 块和 PTA 抽样培训战略。 包括移动性能在内的任何推论设备都可以在运行时完成后完成。 另外, PTA 方法允许在 CamVid 数据集上改进图像分割性 Dice 评分。 最后的训练模型可以在运行时在 6 PTA 配置之间转换, 不同的推论时间和质量。 重要的是, 所有的配置都比原始 UNet 模型( no PTA) 模型的质量要好。