The crossing number of a graph $G$ is the minimum number of crossings in a drawing of $G$ in the plane. A rectilinear drawing of a graph $G$ represents vertices of $G$ by a set of points in the plane and represents each edge of $G$ by a straight-line segment connecting its two endpoints. The rectilinear crossing number of $G$ is the minimum number of crossings in a rectilinear drawing of $G$. By the crossing lemma, the crossing number of an $n$-vertex graph $G$ can be $O(n)$ only if $|E(G)|\in O(n)$. Graphs of bounded genus and bounded degree (B\"{o}r\"{o}czky, Pach and T\'{o}th, 2006) and in fact all bounded degree proper minor-closed families (Wood and Telle, 2007) have been shown to admit linear crossing number, with tight $\Theta(\Delta n)$ bound shown by Dujmovi\'c, Kawarabayashi, Mohar and Wood, 2008. Much less is known about rectilinear crossing number. It is not bounded by any function of the crossing number. We prove that graphs that exclude a single-crossing graph as a minor have the rectilinear crossing number $O(\Delta n)$. This dependence on $n$ and $\Delta$ is best possible. A single-crossing graph is a graph whose crossing number is at most one. Thus the result applies to $K_5$-minor-free graphs, for example. It also applies to bounded treewidth graphs, since each family of bounded treewidth graphs excludes some fixed planar graph as a minor. Prior to our work, the only bounded degree minor-closed families known to have linear rectilinear crossing number were bounded degree graphs of bounded treewidth (Wood and Telle, 2007), as well as, bounded degree $K_{3,3}$-minor-free graphs (Dujmovi\'c, Kawarabayashi, Mohar and Wood, 2008). In the case of bounded treewidth graphs, our $O(\Delta n)$ result is again tight and improves on the previous best known bound of $O(\Delta^2 n)$ by Wood and Telle, 2007 (obtained for convex geometric drawings).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员