We introduce two new lowest order methods, a mixed method, and a hybrid Discontinuous Galerkin (HDG) method, for the approximation of incompressible flows. Both methods use divergence-conforming linear Brezzi-Douglas-Marini space for approximating the velocity and the lowest order Raviart-Thomas space for approximating the vorticity. Our methods are based on the physically correct viscous stress tensor of the fluid, involving the symmetric gradient of velocity (rather than the gradient), provide exactly divergence-free discrete velocity solutions, and optimal error estimates that are also pressure robust. We explain how the methods are constructed using the minimal number of coupling degrees of freedom per facet. The stability analysis of both methods are based on a Korn-like inequality for vector finite elements with continuous normal component. Numerical examples illustrate the theoretical findings and offer comparisons of condition numbers between the two new methods.
翻译:我们引入了两种新的最低顺序方法,一种混合方法,一种混合不连续的加列尔金(HDG)方法,以近似不可压缩的流量。两种方法都使用不同式线性线性Brezzi-Douglas-Marini空间,以近似速度和最低顺序Ravirart-Thomas空间,以接近园艺。我们的方法基于流体物理正确的粘合压强,包括速度(而不是梯度)的对称梯度梯度,提供完全无差异的离散速度解决方案,以及压力强大的最佳误差估计。我们解释这些方法是如何使用每个面部最小的组合自由度来构建的。两种方法的稳定分析基于具有连续正常组件的矢量有限元素的Korn类不平等。数字示例说明了理论结果,并对两种新方法之间的条件数字进行了比较。