Pressure-robust discretizations for incompressible flows have been in the focus of research for the past years. Many publications construct exactly divergence-free methods or use a reconstruction approach [13] for existing methods like the Crouzeix--Raviart element in order to achieve pressure-robustness. To the best of our knowledge, except for our recent publications [3,4], all those articles impose a condition on the shape-regularity of the mesh, and the two mentioned papers that allow for anisotropic elements use a non-conforming velocity approximation. Based on the classical Bernardi--Raugel element we provide a conforming pressure-robust discretization using the reconstruction approach on anisotropic meshes. Numerical examples support the theory.
翻译:过去几年来,研究的焦点一直是不压缩流的压力-气压分解,许多出版物对Crouzix-Raviart元素等现有方法采用了完全无差异的方法或使用重建方法[13],以实现压力-气压-气压-气压-气压-气压分解,据我们所知,除了我们最近的出版物[3,4]之外,所有这些文章都对网状的形状和上述两篇允许厌食元素使用不兼容速度近似法的论文规定了一种条件。根据古典的Bernardi-Raugel元素,我们用对厌食类草的重建方法提供了符合压力-气压-气压分解法。