We present Diversity-Aware Meta Visual Prompting~(DAM-VP), an efficient and effective prompting method for transferring pre-trained models to downstream tasks with frozen backbone. A challenging issue in visual prompting is that image datasets sometimes have a large data diversity whereas a per-dataset generic prompt can hardly handle the complex distribution shift toward the original pretraining data distribution properly. To address this issue, we propose a dataset Diversity-Aware prompting strategy whose initialization is realized by a Meta-prompt. Specifically, we cluster the downstream dataset into small homogeneity subsets in a diversity-adaptive way, with each subset has its own prompt optimized separately. Such a divide-and-conquer design reduces the optimization difficulty greatly and significantly boosts the prompting performance. Furthermore, all the prompts are initialized with a meta-prompt, which is learned across several datasets. It is a bootstrapped paradigm, with the key observation that the prompting knowledge learned from previous datasets could help the prompt to converge faster and perform better on a new dataset. During inference, we dynamically select a proper prompt for each input, based on the feature distance between the input and each subset. Through extensive experiments, our DAM-VP demonstrates superior efficiency and effectiveness, clearly surpassing previous prompting methods in a series of downstream datasets for different pretraining models. Our code is available at: \url{https://github.com/shikiw/DAM-VP}.
翻译:我们提出“多样性-软件启动战略”,这是将预先培训的模型转换成具有冷冻骨骼的下游任务的一个高效和有效的促动方法。视觉提示中的一个棘手问题是,图像数据集有时具有巨大的数据多样性,而每个数据集的通用提示几乎无法正确处理向原始培训前数据分发的复杂分配转变。为解决这一问题,我们提议了一个数据集-软件启动战略,该战略是通过一个元程序启动的。具体地说,我们将下游数据集分组分组成一个小型同质子集,以多样性适应的方式,每个子集都有其自身的迅速优化。这种分解和变换设计会大大降低优化难度,大大提升提示性性性性能。此外,所有提示都以元程序初始化方式进行,在几个数据集中学习。这是一个螺旋式范例,从以前的数据集中获取的快速知识可以帮助更快地聚合,并在新的数据集中进行更好的执行。在计算过程中,我们动态地选择了每个远端的高级数据输入方式,在每一个远端数据序列中,我们动态地选择了一种正确的高级数据输入方式。</s>