In federated learning (FL), clients cooperatively train a global model without revealing their raw data but gradients or parameters, while the local information can still be disclosed from local outputs transmitted to the parameter server. With such privacy concerns, a client may overly add artificial noise to his local updates to compromise the global model training, and we prove the selfish noise adding leads to an infinite price of anarchy (PoA). This paper proposes a novel pricing mechanism to regulate privacy-sensitive clients without verifying their parameter updates, unlike existing privacy mechanisms that assume the server's full knowledge of added noise. Without knowing the ground truth, our mechanism reaches the social optimum to best balance the global training error and privacy loss, according to the difference between a client's updated parameter and all clients' average parameter. We also improve the FL convergence bound by refining the aggregation rule at the server to account for different clients' noise variances. Moreover, we extend our pricing scheme to fit incomplete information of clients' privacy sensitivities, ensuring their truthful type reporting and the system's ex-ante budget balance. Simulations show that our pricing scheme greatly improves the system performance especially when clients have diverse privacy sensitivities.


翻译:在联合学习(FL)中,客户合作培训了一个全球模型,而没有透露原始数据,只是梯度或参数,而当地信息仍然可以从传送到参数服务器的本地产出中披露。由于这种隐私问题,客户可能会在本地更新时过度增加人为噪音,从而损害全球模型培训,我们证明自私的噪音会增加无限的无政府状态(PoA ) 。本文建议建立一个新的定价机制,在不核实参数更新的情况下监管隐私敏感客户,而不必核查参数更新,与假设服务器完全了解新增噪音的现有隐私机制不同。在不了解地面真相的情况下,我们的机制达到了社会最佳社会最佳水平,以根据客户更新参数和所有客户平均参数之间的差异,最佳平衡全球培训错误和隐私损失。我们还改进了FL的趋同,改进了服务器的汇总规则,以考虑到不同客户的噪音差异。此外,我们扩大了我们的定价计划,以适应客户隐私敏感度的不完整信息,确保客户的诚实型式报告和系统前安全预算平衡。模拟显示我们的定价计划大大改进了系统业绩,特别是在客户具有不同隐私敏感度时。</s>

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员