项目名称: 具有高活性晶面In2O3纳米晶的控制性制备及其气敏增强机制研究
项目编号: No.21501116
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 赵桦
作者单位: 陕西师范大学
项目金额: 20万元
中文摘要: 本项目基于配位剂在结构匹配晶面上的选择性吸附,采用水热/溶剂热法首先制备暴露不同晶面的In(OH)3、InOOH纳米结构;再经煅烧处理得到具有不同晶面的In2O3纳米晶。借助软件模拟及密度泛函理论计算,研究 In(OH)3、InOOH 和In2O3纳米材料暴露晶面的原子结构,揭示不同形貌In(OH)3、InOOH的形成机理及其与煅烧所得In2O3的结构关联性。研究所制备的具有不同晶面的In2O3纳米晶对H2、C2H5OH、CO、HCHO等易燃、易爆和有毒气体的响应特性,发现In2O3高活性晶面。利用MS以及VASP等模拟软件构建In2O3高活性晶面的理论模型,采用密度泛函理论确定暴露晶面原子的配位键,不饱和键以及电荷的种类和分布,研究空气中分子氧在In2O3不同暴露晶面上的吸附及其与测试气体的反应,揭示高活性晶面气敏性能增强的根本原因。为高性能气体传感材料的开发提供理论和技术上的支持。
中文关键词: 高活性晶面;In2O3;纳米晶;控制性制备;气敏增强机制
英文摘要: In this project, In(OH)3 and InOOH nanostructures with different morphologies and exposed facets will be prepared via the hydrothermal or solvothermal method based on the selective adsorption of various organic and inorganic complexing agents. Then, In2O3 nanocrystals with different exposed facets will be obtained by calcining the as-prepared In(OH)3 and InOOH precursors. The surface atomic arrangement on the exposed facet of In(OH)3, InOOH 和In2O3 nanostrucures will be studied by software simulation and Density Functional Theoretic (DFT) calculation to reveal the formation mechanism of the In(OH)3 and InOOH nanostructures with different morphologies and the structural correlation between the In2O3 nanocrystals and their In(OH)3, InOOH precursors. Certain highly reactive facets will be found by investigating the gas-sensing performance of In2O3 nanocrystals with different exposed facets to various kinds of combustible, explosive and toxic gas or vapor, such as H2, C2H5OH, CO and HCHO. Theoretical model of In2O3 exposed facets will be built by using the simulation softwares, such as Materials Studio (MS) and Vienna Ab-initio Simulation Package (VASP). By employing the Density Functional Theory, the coordinate bonds, unsaturated bonds and the charge distribution of the In atoms on the In2O3 exposed facets will be confirmed by the, the adsorption and chemical reaction with target gas of molecular oxygen species on different In2O3 exposed facets will be studied, the intrinsic causes of the highly reactive facet enhanced gas-sensing properties will be revealed. The planned research work in the project will provide theoretic and technological support to the development of high-performance gas-sensing materials.
英文关键词: Highly active facets;In2O3 nanocrystals;Controlling preparation;Enhanced gas-sensing mechanism