This paper investigates the use of extended Kalman filtering to train recurrent neural networks with rather general convex loss functions and regularization terms on the network parameters, including $\ell_1$-regularization. We show that the learning method is competitive with respect to stochastic gradient descent in a nonlinear system identification benchmark and in training a linear system with binary outputs. We also explore the use of the algorithm in data-driven nonlinear model predictive control and its relation with disturbance models for offset-free closed-loop tracking.
翻译:本文调查了使用扩大的卡尔曼过滤法来培训经常性神经网络,具有相当一般的孔螺损失功能和网络参数的正规化条件,包括$\ell_1美元-正规化。我们表明,在非线性系统识别基准中,学习方法在随机梯度梯度下降方面是竞争性的,在对线性系统进行二元输出培训方面是竞争性的。我们还探索了在数据驱动的非线性模型预测控制中使用算法,以及这种算法与干扰模型之间的关系,以便进行无偏偏闭的闭环跟踪。