We numerically investigate an adaptive version of the parareal algorithm in the context of molecular dynamics. This adaptive variant has been originally introduced in [F. Legoll, T. Lelievre and U. Sharma, SISC 2022]. We focus here on test cases of physical interest where the dynamics of the system is modelled by the Langevin equation and is simulated using the molecular dynamics software LAMMPS. In this work, the parareal algorithm uses a family of machine-learning spectral neighbor analysis potentials (SNAP) as fine, reference, potentials and embedded-atom method potentials (EAM) as coarse potentials. We consider a self-interstitial atom in a tungsten lattice and compute the average residence time of the system in metastable states. Our numerical results demonstrate significant computational gains using the adaptive parareal algorithm in comparison to a sequential integration of the Langevin dynamics. We also identify a large regime of numerical parameters for which statistical accuracy is reached without being a consequence of trajectorial accuracy.
翻译:在分子动态方面,我们从数字上调查一个适应性参数算法的版本。这个适应性变方最初是在[F. Legol、T. Lelievre和U. Sharma, SISC 2022]中引入的。我们在此集中研究以Langevin方程式模拟系统动态并使用分子动态软件LAMMPS进行模拟的体物利益案例。在这项工作中,模拟性算法将机器学习光谱邻居分析潜力(SNAP)作为精细、参考、潜力和嵌入原子方法潜力(EAM)的组合,作为粗糙的潜力。我们考虑在tungsten lattice 中采用自我间原子,并在元表状态中计算系统的平均常住时间。我们的数字结果显示,与Langevin动力的相继整合相比,使用适应性准值算法取得了显著的计算收益。我们还确定了一个庞大的数字参数体系,其统计精确度是不会引起轨迹精确的。