Lung cancer is a severe menace to human health, due to which millions of people die because of late diagnoses of cancer; thus, it is vital to detect the disease as early as possible. The Computerized chest analysis Tomography of scan is assumed to be one of the efficient solutions for detecting and classifying lung nodules. The necessity of high accuracy of analyzing C.T. scan images of the lung is considered as one of the crucial challenges in detecting and classifying lung cancer. A new long-short-term-memory (LSTM) based deep fusion structure, is introduced, where, the texture features computed from lung nodules through new volumetric grey-level-co-occurrence-matrices (GLCM) computations are applied to classify the nodules into: benign, malignant and ambiguous. An improved Otsu segmentation method combined with the water strider optimization algorithm (WSA) is proposed to detect the lung nodules. Otsu-WSA thresholding can overcome the restrictions present in previous thresholding methods. Extended experiments are run to assess this fusion structure by considering 2D-GLCM computations based 2D-slices fusion, and an approximation of this 3D-GLCM with volumetric 2.5D-GLCM computations-based LSTM fusion structure. The proposed methods are trained and assessed through the LIDC-IDRI dataset, where 94.4%, 91.6%, and 95.8% Accuracy, sensitivity, and specificity are obtained, respectively for 2D-GLCM fusion and 97.33%, 96%, and 98%, accuracy, sensitivity, and specificity, respectively, for 2.5D-GLCM fusion. The yield of the same are 98.7%, 98%, and 99%, for the 3D-GLCM fusion. The obtained results and analysis indicate that the WSA-Otsu method requires less execution time and yields a more accurate thresholding process. It is found that 3D-GLCM based LSTM outperforms its counterparts.


翻译:肺癌是人体健康的一个严重威胁,由于对癌症的诊断迟缓,数百万人因此而死亡;因此,必须尽早发现这一疾病。扫描的计算机化胸腔分析被假定为检测和分类肺结核的有效解决办法之一。分析 C.T. 扫描肺部图像的高度准确性是发现和分类肺癌的关键挑战之一。 引入了一种新的短期TM(LSTM), 其基础为94. 深度聚合结构;因此, 尽早检测该疾病至关重要。 计算机化的胸部分析是检测和分类肺结核的有效方法之一。 肺部扫描图像的高度精确精确性是:检测和分类。 用于检测肺癌和分类的新短期TM(LSTM),基于 94.M.D. D.

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月29日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员