Parameter control has succeeded in accelerating the convergence process of evolutionary algorithms. Empirical and theoretical studies for classic pseudo-Boolean problems, such as OneMax, LeadingOnes, etc., have explained the impact of parameters and helped us understand the behavior of algorithms for single-objective optimization. In this work, by transmitting the techniques of single-objective optimization, we perform an extensive experimental investigation into the behavior of the self-adaptive GSEMO variants. We test three self-adaptive mutation techniques designed for single-objective optimization for the OneMinMax, COCZ, LOTZ, and OneJumpZeroJump problems. While adopting these techniques for the GSEMO algorithm, we consider different performance metrics based on the current non-dominated solution set. These metrics are used to guide the self-adaption process. Our results indicate the benefits of self-adaptation for the tested benchmark problems. We reveal that the choice of metrics significantly affects the performance of the self-adaptive algorithms. The self-adaptation methods based on the progress in one objective can perform better than the methods using multi-objective metrics such as hypervolume, inverted generational distance, and the number of the obtained Pareto solutions. Moreover, we find that the self-adaptive methods benefit from the large population size for OneMinMax and COCZ.
翻译:参数控制成功地加快了进化算法的趋同进程。对典型假假博爱问题,如OneMax、GeauseOnes等的经验和理论研究解释了参数的影响,帮助我们理解了单一目标优化的算法行为。在这项工作中,我们通过传输单一目标优化技术,对自我适应的GSEMO变异体的行为进行了广泛的实验性调查。我们测试了三种自我适应突变技术,这些技术是为OneMinMax、COCZ、LOTZ和OneJum ZeroJump问题实现单一目标优化而设计的。在采用这些技术用于GSEMO算法的同时,我们考虑了基于目前非主导解决方案的不同性性业绩衡量标准。这些衡量标准被用来指导自我调整过程。我们的结果表明了自我适应测试的基准问题的好处。我们发现,选择的测量方法极大地影响了自适应算算算算法的绩效。基于一个目标的自我适应方法可以比一个目标的GEMEMO计算法更好的表现方式。我们从多目标的Mal-dal-dal-dal-dal-dal-dal-dal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-mo-pal-pal-pal-pal-pal-pal-pal-pal-pal-pal-mo-pal-pal-pal-mo-mo-pal-d-mo-pal-pal-pal-mo-mo-p-mo-mo-mo-mo-mo-mod-pal-pal-pal-pal-mod-mod-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mod-mod-mod-mod-mo-mo-mod-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mo-mod-mod-mod-mod-mod-mod-mo-mo-mod-mod-mod-</s>