A key question for adapting modern deep learning architectures to functional MRI (fMRI) is how to represent the data for model input. To bridge the modality gap between fMRI and natural images, we transform the 4D volumetric fMRI data into videos of 2D fMRI activity flat maps. We train Vision Transformers on 2.3K hours of fMRI flat map videos from the Human Connectome Project using the spatiotemporal masked autoencoder (MAE) framework. We observe that masked fMRI modeling performance improves with dataset size according to a strict power scaling law. Downstream classification benchmarks show that our model learns rich representations supporting both fine-grained state decoding across subjects, as well as subject-specific trait decoding across changes in brain state. This work is part of an ongoing open science project to build foundation models for fMRI data. Our code and datasets are available at https://github.com/MedARC-AI/fmri-fm.


翻译:将现代深度学习架构适配于功能磁共振成像(fMRI)的一个核心问题是如何为模型输入表示数据。为弥合fMRI与自然图像之间的模态差异,我们将四维体素fMRI数据转换为二维fMRI活动扁平映射的视频序列。基于人脑连接组计划提供的2.3千小时fMRI扁平映射视频数据,我们使用时序掩码自编码器(MAE)框架训练视觉Transformer模型。研究发现,掩码fMRI建模性能随数据集规模呈现严格幂律标度关系提升。下游分类基准测试表明,该模型学习的丰富表征同时支持跨被试的细粒度状态解码,以及跨脑状态变化的被试特异性特质解码。本研究是构建fMRI数据基础模型的持续开放科学项目组成部分。代码与数据集已公开于https://github.com/MedARC-AI/fmri-fm。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员