Given a collection of $m$ sets from a universe $\mathcal{U}$, the Maximum Set Coverage problem consists of finding $k$ sets whose union has largest cardinality. This problem is NP-Hard, but the solution can be approximated by a polynomial time algorithm up to a factor $1-1/e$. However, this algorithm does not scale well with the input size. In a streaming context, practical high-quality solutions are found, but with space complexity that scales linearly with respect to the size of the universe $|\mathcal{U}|$. However, one randomized streaming algorithm has been shown to produce a $1-1/e-\varepsilon$ approximation of the optimal solution with a space complexity that scales only poly-logarithmically with respect to $m$ and $|\mathcal{U}|$. In order to achieve such a low space complexity, the authors used a technique called subsampling, based on independent-wise hash functions. This article focuses on this sublinear-space algorithm and introduces methods to reduce the time cost of subsampling. We first show how to accelerate by several orders of magnitude without altering the space complexity, number of passes and approximation quality of the original algorithm. Secondly, we derive a new lower bound for the probability of producing a $1-1/e-\varepsilon$ approximation using only pairwise independence: $1-\tfrac{4}{c k \log m}$ compared to the original $1-\tfrac{2e}{m^{ck/6}}$. Although the theoretical approximation guarantees are weaker, for large streams, our algorithm performs well in practice and present the best time-space-performance trade-off for maximum coverage in streams.


翻译:根据宇宙$\ mathcal{U} $的收集 $ 美元, 最大设置覆盖问题包括寻找以美元为单位的组合。 这个问题是 NP- Hard, 但解决方案可以被一个多式时间算法所近似, 最高为 1-1 美元/ 美元。 然而, 这个算法与输入大小不相称。 在流流背景下, 找到实用的高质量解决方案, 但与宇宙大小 $ mathcal{ { { 最大设置问题 。 然而, 一个随机化的流算法显示, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以直线性计算, 以直流为单位, 以直线性算为单位, 以美元为单位, 以直线性算为单位, 将最优的流法方法降低时间成本 。 我们通过原始的运行速度, 将快速地显示, 以目前最低的直径直径为单位, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员