项目名称: 非亏格1中心的平面二次系统的极限环分支问题
项目编号: No.11301105
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 吴奎霖
作者单位: 贵州大学
项目金额: 22万元
中文摘要: 极限环分支问题是微分方程定性理论的主要研究内容,该问题涉及到Hilbert第十六问题。人们普遍认为二次可逆系统在二次扰动下产生的动力学现象最为丰富。本项目主要研究二次可逆系统在二次扰动下的极限环分支问题, 主要内容包括:1、具有非代数首次积分的二次可逆系统;2、非亏格1中心的二次可逆系统;3、具有双中心的二次可逆Lotka-Volterra系统;4、亏格1中心的系统(r6)。这些问题的研究有着重要的理论意义和学术价值。
中文关键词: 极限环;周期函数;阿贝尔积分;临界周期;分支
英文摘要: The problem of bifurcation of limit cycles is important for qualitative theory of differential equations, which is related to the Hilbert's 16th problem. It is widely believed that the dynamics phenomenas generated by the quadratic reversible systems under quadratic perturbations are very rich. The project is going to investigate the problem of bifurcation of limit cycles of quadratic reversible systems under quadratic perturbation, which contains the following contents: (1) the quadratic reversible systems with non-algebraic first integral; (2) the quadratic reversible centers with non-genus one; (3) the quadratic reversible Lotka-Volterra systems with two centers; (4) the center of system (r6) with genus one. The study of these problems is very important for theoretical significance and academic value.
英文关键词: Limit cycle;period function;Abelian integral;critical period;bifurcation