Contingency tables are useful objects in statistics for representing 2-way data. With fixed row and column sums, and a total of $n$ entries, contingency tables correspond to parabolic double cosets of $S_n$. The uniform distribution on $S_n$ induces the Fisher-Yates distribution, classical for its use in the chi-squared test for independence. A Markov chain on $S_n$ can then induce a random process on the space of contingency tables through the double cosets correspondence. The random transpositions Markov chain on $S_n$ induces a natural `swap' Markov chain on the space of contingency tables; the stationary distribution of the Markov chain is the Fisher-Yates distribution. This paper describes this Markov chain and shows that the eigenfunctions are orthogonal polynomials of the Fisher-Yates distribution. Results for the mixing time are discussed, as well as connections with sampling from the uniform distribution on contingency tables, and data analysis.
翻译:应急表格是代表双向数据的统计中的有用对象。使用固定的行和列总和以及总计为美元的项目,应急表格对应的是抛物线双相叠合美元=n美元。美元的统一分配导致Fisher-Yates-Yates分布,这是用于奇形独立测试的典型做法。用美元设置的Markov链条可以通过双倍组合通信在应急表格空间上随机生成过程。用美元设置的随机转换位置Markov链在$S_n$上诱发自然的“swap” Markov链条;Markov链条的固定分布是Fisher-Yates分布。本文描述了这个Markov链条,并表明机能是Fisherger-Yates分布的交错多球。讨论了混合时间的结果,以及与应急表格统一分布的抽样和数据分析的连接。