Two-sample tests with censored outcomes are a classical topic in statistics with wide use even in cutting edge applications. There are at least two modes of inference used to justify two-sample tests. One is usual superpopulation inference assuming that units are independent and identically distributed (i.i.d.) samples from some superpopulation; the other is finite population inference that relies on the random assignments of units into different groups. When randomization is actually implemented, the latter has the advantage of avoiding distributional assumptions on the outcomes. In this paper, we focus on finite population inference for censored outcomes, which has been less explored in the literature. Moreover, we allow the censoring time to depend on treatment assignment, under which exact permutation inference is unachievable. We find that, surprisingly, the usual logrank test can also be justified by randomization. Specifically, under a Bernoulli randomized experiment with non-informative i.i.d. censoring, the logrank test is asymptotically valid for testing Fisher's null hypothesis of no treatment effect on any unit. The asymptotic validity of the logrank test does not require any distributional assumption on the potential event times. We further extend the theory to the stratified logrank test, which is useful for randomized block designs and when censoring mechanisms vary across strata. In sum, the developed theory for the logrank test from finite population inference supplements its classical theory from usual superpopulation inference, and helps provide a broader justification for the logrank test.
翻译:检查结果的两样模样测试是统计中一个典型的话题,即使在尖端应用中也广泛使用。 至少有两种不同的推论模式, 用来证明两次抽样测试的合理性。 一种是通常的超人口推论, 假设单位是独立的, 来自某些超人口的样本分布相同( id.) ; 另一种是取决于单位随机分配到不同组的有限人口推论。 在实际实施随机化时, 后者具有避免对结果进行分配假设的优势。 在本文中, 我们侧重于有限的人口对被审查结果的推论, 而文献中对此的探讨较少。 此外, 我们允许审查时间来依赖治疗任务, 而在这种方法下, 精确的变异性推论是无法实现的。 我们发现, 奇怪的是, 通常的校正测试测试测试测试也是合理的。 具体地, 伯纳利随机化的实验i. i. d. 检查, 逻辑测试对于测试Fisherer的纯度假设的无效性假设在任何单位的处理效果上都是有效的, 。 我们的逻辑的逻辑的逻辑在任何机理学上, 测试等级的逻辑的逻辑的推度是,, 的逻辑的逻辑在任何结构的推论的推论的逻辑的推延的逻辑的推度是,, 的逻辑的逻辑的逻辑的逻辑的推论的推论的推度是, 的推论的推论的推度是任何单位的推论的推论的推论的推论的推论的推理, 的推度在任何单位的推度, 的推论的推理, 的推论的推理, 的推理, 的推理, 的推理, 的推理的推理, 的推论的推理, 的推理的推理的推理的推理性推理性推理, 的推理, 的推理性推理性推理性推理性推理性推理性推理, 的推理性推理性推理性推理, 的推理性推理性推理性推理, 的推理的推理的推理的推理的推理的推理性推理性推理性推理的推理的推理的推理,