We demonstrate the utility of deep learning for modeling the clustering of particles that are aerodynamically coupled to turbulent fluids. Using a Lagrangian particle module within the ATHENA++ hydrodynamics code, we simulate the dynamics of particles in the Epstein drag regime within a periodic domain of isotropic forced hydrodynamic turbulence. This setup is an idealized model relevant to the collisional growth of micron to mmsized dust particles in early stage planet formation. The simulation data is used to train a U-Net deep learning model to predict gridded three-dimensional representations of the particle density and velocity fields, given as input the corresponding fluid fields. The trained model qualitatively captures the filamentary structure of clustered particles in a highly non-linear regime. We assess model fidelity by calculating metrics of the density structure (the radial distribution function) and of the velocity field (the relative velocity and the relative radial velocity between particles). Although trained only on the spatial fields, the model predicts these statistical quantities with errors that are typically < 10%. Our results suggest that, given appropriately expanded training data, deep learning could be used to accelerate calculations of particle clustering and collision outcomes both in protoplanetary disks, and in related two-fluid turbulence problems that arise in other disciplines.
翻译:我们展示了深层学习对于模拟粒子集集的有用性,这些粒子在空气动力学上与动荡流体相联。我们利用AHENA+流体动力学代码中的拉格朗格亚粒子模块,在非线性强流体动力学波动的定期领域模拟Epstein拖动系统中粒子的动态。这个设置是一个理想化模型,它与微子与成千成千成千成千成千成千的尘颗粒在早期行星形成中的相撞增长有关。模拟数据用于培训U-Net深层学习模型,以预测粒子密度和速度域的三维电网化显示,作为相应的流体输入。经过培训的模型在质量上捕捉到高度非线性系统中集聚粒子的丝质结构。我们通过计算密度结构(辐射分布功能)和速度场(粒子之间的相对速度和相对辐射速度)的测量尺度来评估模型的准确性。模型预测这些统计数量,其误差通常为 < 10%。我们得到的模型显示,在高度非线性化系统中,在精确的磁层中,在进行精确的计算时,在使用两个模型中,在磁层中,可以产生相关的计算过程中,在加速进行相关的数据流流学中,因此,在进行有关的结果会产生。