We investigate the linear stability analysis of a pathway-based diffusion model (PBDM), which characterizes the dynamics of the engineered Escherichia coli populations [X. Xue and C. Xue and M. Tang, P LoS Computational Biology, 14 (2018), pp. e1006178]. This stability analysis considers small perturbations of the density and chemical concentration around two non-trivial steady states, and the linearized equations are transformed into a generalized eigenvalue problem. By formal analysis, when the internal variable responds to the outside signal fast enough, the PBDM converges to an anisotropic diffusion model, for which the probability density distribution in the internal variable becomes a delta function. We introduce an asymptotic preserving (AP) scheme for the PBDM that converges to a stable limit scheme consistent with the anisotropic diffusion model. Further numerical simulations demonstrate the theoretical results of linear stability analysis, i.e., the pattern formation, and the convergence of the AP scheme.
翻译:我们调查了基于路径的传播模型(PBDM)的线性稳定性分析,该模型的特征是工程Escherichia大肠杆菌群的动态[X.X. Xu和C. Xue和M. Tang,P LoS Computational Bilogy, 14 (2018), pp. e 1006178]。这一稳定性分析考虑到两个非三角稳定状态周围密度和化学浓度的小扰动,而线性方程被转化成一个普遍的双元值问题。通过正式分析,当内部变量对外部信号反应足够快时,PBDM将汇集到一个厌食性扩散模型,而内部变量的概率密度分布则成为一种三角函数。我们为PBDMM引入了一种无症状保存(AP)办法,该办法与与厌食扩散模型一致的稳定限制方案。进一步的数值模拟显示了线性稳定性分析的理论结果,即模式形成和AP计划趋同。