We investigate the linear stability analysis of a pathway-based diffusion model (PBDM), which characterizes the dynamics of the engineered Escherichia coli populations [X. Xue and C. Xue and M. Tang, P LoS Computational Biology, 14 (2018), pp. e1006178]. This stability analysis considers small perturbations of the density and chemical concentration around two non-trivial steady states, and the linearized equations are transformed into a generalized eigenvalue problem. By formal analysis, when the internal variable responds to the outside signal fast enough, the PBDM converges to an anisotropic diffusion model, for which the probability density distribution in the internal variable becomes a delta function. We introduce an asymptotic preserving (AP) scheme for the PBDM that converges to a stable limit scheme consistent with the anisotropic diffusion model. Further numerical simulations demonstrate the theoretical results of linear stability analysis, i.e., the pattern formation, and the convergence of the AP scheme.


翻译:我们调查了基于路径的传播模型(PBDM)的线性稳定性分析,该模型的特征是工程Escherichia大肠杆菌群的动态[X.X. Xu和C. Xue和M. Tang,P LoS Computational Bilogy, 14 (2018), pp. e 1006178]。这一稳定性分析考虑到两个非三角稳定状态周围密度和化学浓度的小扰动,而线性方程被转化成一个普遍的双元值问题。通过正式分析,当内部变量对外部信号反应足够快时,PBDM将汇集到一个厌食性扩散模型,而内部变量的概率密度分布则成为一种三角函数。我们为PBDMM引入了一种无症状保存(AP)办法,该办法与与厌食扩散模型一致的稳定限制方案。进一步的数值模拟显示了线性稳定性分析的理论结果,即模式形成和AP计划趋同。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员