Inexact Markov Chain Monte Carlo methods rely on Markov chains that do not exactly preserve the target distribution. Examples include the unadjusted Langevin algorithm (ULA) and unadjusted Hamiltonian Monte Carlo (uHMC). This paper establishes bounds on Wasserstein distances between the invariant probability measures of inexact MCMC methods and their target distributions with a focus on understanding the precise dependence of this asymptotic bias on both dimension and discretization step size. Assuming Wasserstein bounds on the convergence to equilibrium of either the exact or the approximate dynamics, we show that for both ULA and uHMC, the asymptotic bias depends on key quantities related to the target distribution or the stationary probability measure of the scheme. As a corollary, we conclude that for models with a limited amount of interactions such as mean-field models, finite range graphical models, and perturbations thereof, the asymptotic bias has a similar dependence on the step size and the dimension as for product measures.


翻译:不精確馬爾可夫鏈蒙地卡羅方法依賴不完全保持目標分佈的馬爾可夫鏈。其中包括未校正蘭逊渐进算法(ULA)和未校正哈密顿蒙地卡羅(uHMC)。本文根据目标分布或方案的定常概率测度,关注了在维度和离散化步长方面的误差。假设对于精确或近似动力学的收敛到平衡的Wasserstein距离的边界,我们显示出对于ULA和uHMC,渐近偏差取决于与目标分布或方案的不变概率测度有关的关键量。作为推论,我们得出结论:对于具有有限交互量的模型(例如均场模型、有限范围图模型和其扰动),与产品测度相比,渐近偏差具有类似的对于步长和维度的依赖性。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员