We study the optimal multi-period asset allocation problem with leverage constraints in a persistent, high-inflation environment. Based on filtered high-inflation regimes, we discover that a portfolio containing an equal-weighted stock index partially stochastically dominates a portfolio containing a capitalization-weighted stock index. Assuming the asset prices follow the jump diffusion model during high inflation periods, we establish a closed-form solution for the optimal strategy that outperforms a passive strategy under the cumulative quadratic tracking difference (CD) objective. The closed-form solution provides insights but requires unrealistic constraints. To obtain strategies under more practical considerations, we consider a constrained optimal control problem with bounded leverage. To solve this optimal control problem, we propose a novel leverage-feasible neural network (LFNN) model that approximates the optimal control directly. The LFNN model avoids high-dimensional evaluation of the conditional expectation (common in dynamic programming (DP) approaches). We establish mathematically that the LFNN approximation can yield a solution that is arbitrarily close to the solution of the original optimal control problem with bounded leverage. Numerical experiments show that the LFNN model achieves comparable performance to the closed-form solution on simulated data. We apply the LFNN approach to a four-asset investment scenario with bootstrap resampled asset returns. The LFNN strategy consistently outperforms the passive benchmark strategy by about 200 bps (median annualized return), with a greater than 90% probability of outperforming the benchmark at the terminal date. These results suggest that during persistent inflation regimes, investors should favor short-term bonds over long-term bonds, and the equal-weighted stock index over the cap-weighted stock index.


翻译:我们研究了一个多期资产配置问题,考虑了在持续高通胀环境下的杠杆约束。基于滤波的高通胀环境,我们发现一个平权重股票指数部分随机优于一个市值加权股票指数的投资组合。假设资产价格在高通胀期间遵循跳跃扩散模型,我们建立了一个封闭形式的最优策略,其在累积二次追踪误差(CD)目标下优于被动策略。封闭形式的解决方案提供了一些见解,但需要不现实的约束。为了在更实际的考虑中获得策略,我们考虑了一个有限杠杆的受约束最优控制问题。为了解决这个最优控制问题,我们提出了一种新的具有杠杆可行性的神经网络(LFNN)模型,直接逼近最优控制。LFNN模型避免了动态规划(DP)方法中高维条件期望评估。我们证明了数学上的事实,即LFNN逼近可以产生任意接近有限杠杆原始最优控制问题的解。数值实验表明,在模拟数据上,LFNN模型实现了与封闭形式解决方案相当的性能。我们将LFNN方法应用于一个具有bootstrap重抽样资产收益率的四个资产投资情景。LFNN策略始终优于被动基准策略约200 bps(年化收益率中位数),在终止日期有超过90%的击败基准的概率。这些结果表明,在持续通胀环境中,投资者应偏向于短期债券而非长期债券,并且平权重股票指数周期权重股票指数。

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关VIP内容
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
相关资讯
7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员