The high-order gas-kinetic scheme (HGKS) features good robustness, high efficiency and satisfactory accuracy,the performaence of which can be further improved combined with WENO-AO (WENO with adaptive order) scheme for reconstruction. To reduce computational costs in the reconstruction procedure, this paper proposes to combine HGKS with a hybrid WENO-AO scheme. The hybrid WENO-AO scheme reconstructs target variables using upwind linear approximation directly if all extreme points of the reconstruction polynomials for these variables are outside the large stencil. Otherwise, the WENO-AO scheme is used. Unlike combining the hybrid WENO scheme with traditional Riemann solvers, the troubled cell indicator of the hybrid WENO-AO method is fully utilized in the spatial reconstruction process of HGKS. During normal and tangential reconstruction, the gas-kinetic scheme flux not only needs to reconstruct the conservative variables on the left and right interfaces but also to reconstruct the derivative terms of the conservative variables. By reducing the number of times that the WENO-AO scheme is used, the calculation cost is reduced. The high-order gas-kinetic scheme with the hybrid WENO-AO method retains original robustness and accuracy of the WENO5-AO GKS, while exhibits higher computational efficiency.


翻译:高阶气体动力学方案(High-order Gas-Kinetic Scheme,HGKS)具有良好的稳健性,高效性和令人满意的准确性,结合WENO-AO(带自适应阶数的加权本质有限差分格式)方案进行重建能够进一步提高其性能。为了减少重建过程中的计算成本,本文提出了一种将HGKS与混合WENO-AO方案相结合的方法。混合WENO-AO方案的重建过程可以直接使用上行线性插值来重建目标变量,如果这些变量的重建多项式的极值点全部位于大的模板之外。否则,将使用WENO-AO方案。与将混合WENO方案与传统的Riemann求解器相结合不同,混合WENO-AO方法的问题单元指示器被充分利用在HGKS的空间重建过程中。在正常和切向重建过程中,气体动力学方案的通量不仅需要在左右界面上重构保守变量,还需要重构这些变量的导数项。通过减少使用WENO-AO方案的次数,可以降低计算成本。高阶气体动力学方案与混合WENO-AO方法的结合保留了WENO5-AO GKS的原始稳健性和准确性,同时表现出更高的计算效率。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员