Successful data representation is a fundamental factor in machine learning based medical imaging analysis. Deep Learning (DL) has taken an essential role in robust representation learning. However, the inability of deep models to generalize to unseen data can quickly overfit intricate patterns. Thereby, we can conveniently implement strategies to aid deep models in discovering useful priors from data to learn their intrinsic properties. Our model, which we call a dual role network (DRN), uses a dependency maximization approach based on Least Squared Mutual Information (LSMI). The LSMI leverages dependency measures to ensure representation invariance and local smoothness. While prior works have used information theory measures like mutual information, known to be computationally expensive due to a density estimation step, our LSMI formulation alleviates the issues of intractable mutual information estimation and can be used to approximate it. Experiments on CT based COVID-19 Detection and COVID-19 Severity Detection benchmarks demonstrate the effectiveness of our method.
翻译:成功的数据代表制是机器学习医学成像分析的基本因素。深层学习(DL)在有力的代表性学习中起到了不可或缺的作用。然而,深层模型无法向不可见的数据进行概括化,这可以迅速超越复杂的模式。因此,我们可以方便地实施战略,帮助深层模型从数据中发现有用的前科以了解其内在特性。我们称之为双重作用网络(DRN)的模型使用基于最小平方相互信息(LSMI)的依赖性最大化方法。LSMI利用依赖性措施确保代表性的变异性和当地平滑性。虽然先前的工程使用了共同信息等信息理论措施,已知由于密度估计步骤而计算成本高昂,但我们的LSMI公式减轻了棘手的相互信息估计问题,并可用于估算其内在特性。基于COVID-19探测和COVID-19天分辨基准的CT实验展示了我们方法的有效性。