Despite recent progress in improving the performance of misinformation detection systems, classifying misinformation in an unseen domain remains an elusive challenge. To address this issue, a common approach is to introduce a domain critic and encourage domain-invariant input features. However, early misinformation often demonstrates both conditional and label shifts against existing misinformation data (e.g., class imbalance in COVID-19 datasets), rendering such methods less effective for detecting early misinformation. In this paper, we propose contrastive adaptation network for early misinformation detection (CANMD). Specifically, we leverage pseudo labeling to generate high-confidence target examples for joint training with source data. We additionally design a label correction component to estimate and correct the label shifts (i.e., class priors) between the source and target domains. Moreover, a contrastive adaptation loss is integrated in the objective function to reduce the intra-class discrepancy and enlarge the inter-class discrepancy. As such, the adapted model learns corrected class priors and an invariant conditional distribution across both domains for improved estimation of the target data distribution. To demonstrate the effectiveness of the proposed CANMD, we study the case of COVID-19 early misinformation detection and perform extensive experiments using multiple real-world datasets. The results suggest that CANMD can effectively adapt misinformation detection systems to the unseen COVID-19 target domain with significant improvements compared to the state-of-the-art baselines.


翻译:尽管最近在改进误报检测系统绩效方面取得了进展,但将误报归为隐蔽领域仍是一个难以应对的挑战。为了解决这一问题,一个共同的方法是引入一个域批评器,鼓励域变量输入功能;然而,早期误报往往显示与现有误报数据(如COVID-19数据集的等级不平衡)相比,有条件和标签的变化,使这类方法对早期误报的检测效果较差。在本文件中,我们建议采用对比性适应网络,以便早期误报检测(CANMD)。具体地说,我们利用假标签来生成与源数据联合培训的高信任目标范例。我们另外设计了一个标签校正部分,以估计和纠正源与目标领域之间的标签变化(如类前)。此外,在目标功能中,差异性调整损失被整合了,以减少类内差异,扩大阶级间差异。因此,我们建议采用经修改的模型学习校正的前类,并在两个领域进行不固定的有条件的分布,以改进目标数据分布。我们研究COVI-19早期误报校正案例,将数据检测结果与大规模升级,以便用实际的CAMAMD基准进行广泛的试验。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员